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MOMENTUM FLUX:  GROSS, SCALAR, ALONGWIND, OR NET?  
  
Introduction. 
  
 Modern micrometeorology is an amalgam of two traditions: one arises from field 
measurements in the open atmosphere and another from wind tunnel experiments. Early 
micrometeorological field work, and even relatively recent studies (viz. the von Karman 
constant experiments by Frenzen and Vogel, 1995), were done with precision cup 
anemometers, which can only provide a scalar speed measurement. Most of the early 
flux/gradient measurement programs (see Dyer, 1974) used scalar wind measurements, 
and derived quantities such as friction velocity (u*), logarithmic wind profiles, and 
Monin-Obukhov Similarity Theory (MOST) relationships based on these measurements.  
Businger et al. (1971) made a distinction between the mean horizontal (scalar) wind 
speed and the magnitude of the mean horizontal wind vector.  However, Businger (1973) 
reverted to the old habit of referring to the mean (scalar) horizontal wind speed u (the 
underbar signifies an averaged or mean quantity) in his work on turbulent transfer in the 
atmospheric surface layer.  Meanwhile, velocity component and Reynolds stress 
experiments done in wind tunnels relied primarily on hot-wire anemometry (see, for 
example, Bradshaw, 1971), which provided orthogonal velocity component measure-
ments. With the advent of sonic anemometry (sonics), atmospheric measurements of 
alongwind u, crosswind v, and vertical w velocity components have become routine. In 
consequence, eddy correlation techniques taken from the laboratory tradition are used in 
computation of a “vector” momentum flux Fn and derived quantities such as friction 
velocity u* and Obukhov length L.  Other flux computations are also possible, including 
the scalar, gross, and alongwind flux. Given the capacity to compute momentum flux in a 
variety of different ways, which way is most appropriate for MOST applications?  
 
1.  Flux Computation Alternatives.  
 
 The flux of a scalar quantity is simply a mean of the individual products of w with 
that generalized scalar quantity a: 
 

Fa = S(wiai)/n = w´a  ́- w a        (1) 
 
where the subscript i signifies the ith measurement, S indicates summation from the first 
to the nth measurement, and primed quantities represent departures of individual 
measurements from a time-averaged mean. (The means of individual primed quantities 
are zero and the mean vertical velocity w is assumed to be zero). Given u and v 
component measurements, one can invoke a trigonometric identity for scalar wind speed 
s = (u2 + v2)1/2 = usin? + vcos? , where ? is the (double argument) arctangent of u and v. 
When used in a product with w, this produces a scalar flux 
 



Fs = S[wi(ui
2 + vi

2)1/2]/n = S[wi(uisin?i + vicos?i)]/n = S(wisi)/n = w´s .́    (2) 
 

 The situation with “vector” momentum flux is more complex, and can produce 
disparate results depending on how the computation is performed. MOST relationships 
found in some references (viz. Stull, 1984) present Fn and related quantities as products 
of the square root of the sum of the squares of the averaged product of w with u and v: 
 

Fn =  - [(Swiui/n)2 + (Swivi/n)2]1/2  = -[(w´u )́2 + (w´v )́2]1/2,    (3a) 
 
which can also be presented as products with sines and cosines, 
 

Fn = -[(Swiui/n)sin? + (Swivi/n)cos?]  = -[w´u śin? + w´v´cos?],   (3b) 
 

where ? is determined by a double argument tan-1(w´u /́ w´v )́. Friction velocity and L are 
given by 

 
u* = [(w´u )́2 + (w´v )́2]1/4,        (4) 

 
L = [(w´u´)2 + (w´v´)2]3/4/[k(g/Ts)(w´Ts´)],      (5) 

 
where Ts is the sonic-derived  temperature (ºK), and w´Ts´ is the (scalar) temperature 
flux. This quantity is described as a “net” flux for reasons described below. 
 
 The gross flux Fg is the mean of the absolute products of w with u and v 
components 
 

Fg = S[|wi(ui
2 + vi

2)1/2?|]/n,        (6) 
 

and the alongwind flux Fa is the flux of the alongwind component of the wind after a 
software (two coordinate) rotation into the mean horizontal wind, with v = 0 
 

Fa = S(wiuia)/n          (7) 
  
2. Evaluating Momentum Flux Computation Method Differences. 
 
 The scalar momentum flux is easy to understand because it is the mean of the sum 
of the individual products of w with s. The sign of Fs is determined by the cumulative 
sum of the individual products of ±w with its corresponding positive scalar speed, or 
equivalently with ±s´, and as such is computed in the same way that the flux of any other 
scalar quantity is computed.  
 
 Net momentum flux arises from the square root of the summed squares of the 
means of the products of w with u and with v. The resulting equations are problematic in 
that, while the mean of the sums of the products of w with u or v can be of either sign, 
this sign is lost by taking the square root of the sum of the squares (Eqn. 3a) or by 
applying its trigonometric equivalent (Eqn. 3b). Thus, the sign of Fn depends on whether 



or not the user applies a negative sign to the equation rather than on the direction of net 
momentum flux. Likewise, Eqns. (4) and (5) do not take the sign of the flux into account. 
In the laboratory, where the wall is the momentum sink and momentum flux is always 
directed towards the wall, Eqns. (3a) and (3b) can be used without a problem. However, 
the atmosphere offers far more complexity; w´u  ́and w´v  ́can take either sign. Friction 
velocity and L cannot be properly defined if momentum flux is positive, even though 
these equations will produce what appears to be a mathematically correct result. 
 
 Gross flux differs from the scalar flux in that the direction of the flux is lost with 
computation of absolute values of each product of w with s.  As with the net flux, the sign 
or direction of the flux is lost. Gross flux can be thought of as the sum of a correlated 
component that appears in other flux computation procedures, plus a random or 
uncorrelated component. It is therefore more an indicator of turbulence than of flux. 
Biltoft (2000) shows that Fg is directly proportional to and highly correlated with vertical 
velocity variance. 
 
 Alongwind flux, computed using only the alongwind component of the wind 
speed, is most appropriately considered a “vector” flux because it retains its directional 
component through its computation. Computation of Fa is performed after rotation into 
the mean wind direction. The product of w with the rotated crosswind component is not 
used in the alongwind flux; the sign of the crossing wind component is arbitrarily 
determined by whether crosswind from the left or right is chosen to be positive. 
 
 Distinct relationships arise from the computation of the different fluxes. Gross 
flux is the greatest in absolute magnitude, and Fa, because it lacks a contribution from the 
crosswind component, is likely to be the smallest in absolute magnitude. Scalar flux lies 
between these two: Fg = |?Fs|  =  |?Fa|?. Scalar flux can approach Fg only in the unlikely event 
that w does not change sign during the measurement period (thereby violating w = 0). 
Likewise, Fa approaches the magnitude of  Fs  only in the unlikely event that crosswinds 
are zero and changes in speed are due solely to alongwind pulses or gusts. The 
relationship with Fn is more complicated. For any given data set, Fs and Fg remain 
constant so long as the magnitudes of the u and v components do not change, while Fn 
can assume values greater than or less than Fs depending on the sums of products of w 
with u and v.  
 
 It is useful to consider the behavior of the various forms of momentum flux as 
they approach limits. Considering turbulence as the sum of correlated plus uncorrelated 
motions, all fluxes must approach zero as turbulence diminishes towards zero. If flux 
exists only when turbulence is present, does it also exist when the mean flow is zero and 
only turbulence is present? Alternatively, is a sustained horizontal wind direction a 
requirement for momentum exchange to occur? Conceptually, there is no reason why 
momentum flux cannot occur even if u = v = w = 0, as long as some correlation between 
instantaneous horizontal and vertical components exists. The atmosphere approaches this 
condition at the free convection limit, or during a nocturnal calm. Measured over finite 
time periods during very low wind speeds, Fa approaches zero, but varies between small 
values of either sign. Likewise, the w´u  ́and w´v  ́components of Fn can assume either 



sign, rendering it an unreliable flux indicator in light winds. Because the instantaneous 
horizontal wind component can only be zero or a positive quantity, Fs and Fg exhibit the 
least random behavior, and Fs provides the true momentum flux direction. Because it 
does not distinguish between correlated and uncorrelated turbulent components, Fg is 
more indicative of turbulence than of a true flux. Therefore, only Fs and Fa can provide a 
true representation of flux in light and variable winds. 
 
3. What is MOST Consistent? 
 
 As mentioned in the introduction, MOST is an amalgam of “scalar” and “vector” 
traditions. This produces certain inconsistencies that should be sorted out. For example, 
Mahrt et al. (2001) argue that defining drag coefficient CD as a ratio of momentum flux to 
the time-average of the instantaneous (scalar) wind speed is inconsistent because: “(1) the 
drag coefficient is computed from a vector average of the stress and scalar average of the 
wind speed. (2) similarity theory requires the vector-averaged wind and (3) the time-
average of the instantaneous wind includes contributions from the turbulence.” It is true 
that taking CD as the ratio of a scalar wind to a vector flux introduces an undesirable 
inconsistency. Perhaps using the ratio of the scalar wind to the scalar flux would be more 
appropriate. The MOST requirement for a vector-averaged wind is questionable, 
considering that much of its development occurred using scalar measurements. 
 
 If it is inconsistent to use vector and scalar averaged quantities for CD, then the 
use of scalar and vector ratios for MOST variables should be reconsidered. Obukhov 
length, for example, could be computed using scalar momentum flux in ratio with the 
scalar temperature flux (w´T´)/(w´s )́3/2. This would make L more consistent with scalar-
averaged winds used with the logarithmic wind profile equation and with relationships 
used to determine the von Karman constant. 
 
4. Conclusions. 
 
 This note is intended to initiate discussion of scalar vs. momentum flux, rather 
than be the last word on this subject. The commonly used net (or vector) flux is 
problematic because the sign of w´u  ́and w´v  ́are lost in the computation process. This 
becomes a particularly significant issue for flux computation in light winds. Because it is 
more consistent when used in a ratio with other scalar fluxes, and retains the true flux 
direction with the least erratic results in low winds, the scalar momentum flux appears to 
be the eddy correlation momentum flux measurement of choice for MOST applications. 
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